Semantically Annotating and Contextualising Big Collections of Human-Readable Documents

Jluisred.github.io

1. Me:

Research Interests, Projects, Publications.

2. My Research:

Contextualize news stories.

3. Future: Upcoming Challenges

2016/10/11

About me...

2016/10/11

PhD @ Nice Sophia Antipolis

Atem

Semantic Multimedia

Natural Language Processing

Audio and Video Analysis

2016/10/11

Postdoc @ Madrid Politécnica de Madrid

Ontology Engineering

Knowledge Representation

Linguistics and NPL

Projects:

2016/10/11

Publications

Journals (2), Conferences (6), Workshops(5), Demo/Poster(7) TOTAL (+30)

Journals

 <u>Redondo Garcia J. L</u> and Adolfo Lozano-Tello: OntoTV: an Ontology Based System for the Management of Information about Television Content. International Journal of Semantic Computing, 6(01), 111-130, 2012.

Conferences

- <u>Redondo Garcia J. L</u>., Rizzo G., Troncy R. (2015) Capturing News Stories Once, Retelling a Thousand Ways. In: 8th International Conference on Knowledge Capture (K-CAP'15), Palisades, NY, USA.
- <u>Redondo Garcia J. L.</u>, Rizzo G., Troncy R. (2015) The Concentric Nature of News Semantic Snapshots: Knowledge Extraction for Semantic Annotation of News Items. In: 8th International Conference on Knowledge Capture (K-CAP'15), Palisades, NY, USA.

- <u>Redondo Garcia J. L</u>., Rizzo G., Romero L. P., Hildebrand M., Troncy R. (2015) Generating Semantic Snapshots of Newscasts using Entity Expansion. In: 15th International Conference on Web Engineering (ICWE'15), Rotterdam, the Netherlands.
- Rizzo G., Steiner T., Troncy R., Verborgh R., <u>Redondo Garcia J. L</u>. and Van de Walle R. (2012), What Fresh Media Are You Looking For? Extracting Media Items from Multiple Social Networks. In (ACM Multimedia) International Workshop on Socially-Aware Multimedia (SAM'12), Nara, Japan

Timeline

1. Semantic Multimedia (2012-2014)

Media Fragment URI's Multimodal Semantic Annotation

- 2. Context of News Stories (2014-2016)
- 3. Scientific Knowledge Discovery(2016)
 - <u>http://drinventor.dia.fi.upm.es/</u>
 - Topic Modelling, Ontology Learning

Christian Schulz, Christoph von Tycowicz, Hans-Peter Seidel, and Klaus Hildebrandt. 2014. "Animating deformable objects using sparse spacetime constraints" ACM Trans. Graph. 33, 4, Article 109 (July 2014), 10 pages

2016/10/11

My Research Semantically Contextualizing News Stories

2016/10/11

The Use Case: Contextualizing News

The Use Case: Contextualizing News

МЕЖДУНАРОДНЫЙ АЗРОПОРТ WEPEMETLEBO

Ξ		LinkedTV News	29 July 2013 🏾 🏠
CURRENT PROGRAM	GLOBAL TO LOCAL		
Snowden applies for Russia asylum	TIMELINE	BBC NEWS - EDWARD SNOWDEN: TIMELINE	original article
Egypt's Morsi vows to stay in office	2014 BBC News - Edward 23 MAR Snowden: Timeline		
Fukushima leak causes Japan concern	2014 BBC News - Edward Snowden case: US		
Rallies in US over Zimmerman verdict	23 MAIN rebukes China		1
Royal baby prince named George	23 MAR 23 MAR iet	a er	
	2014 BBC News - US castigates Russia ove NSA leaker Edward Snowden	r	AFP
	2014 BBC News - Obama refuses to barter for Edward Snowden	Aug 20, 2013 Edward Snowden, the so of the largest intelligence leaks in US his been granted temporary asylum in Russi	ource of one tory has a as he
	2014 BBC News - Ireland sa no to arrest warrant fo Edward Snowden	ays seeks to?	
	2014 Edward Snowden's Ecuador asylum bid 'might take weeks'		
	IN DEPTH		
	OPINION		
	IN OTHER MERIN		

2016/10/11

Semantic Snapshot of News (NSS)

Definition and Motivation

A Gold Standard of News Entities

2016/10/11

The News Semantic Snapshot (NSS)

Part **2.**a

The News Semantic Snapshot (NSS)

2016/10/11

'ar

2016/10/11

ALJAZEERA

Semantically Annotating and Contextualising Big Collections of Human-Readable Documents

tt the state of th

(3) PATRICK VENTRELL DC State Department spokesman

BBC NEWS

The News Semantic Snapshot: Gold Standard

High Level of detail, significant human Intervention:

Entities in 5 Dimensions: (Visual & Text)

BBC

(5) Related articles

heguardian

(4) Suggestions of an expert

the news domain + users)

Che New Hork Cimes "We don't have any extradition treaty with Russia. Broadly speaking our policy remains the same: that we'd like him returned (2) Image in the video

Part

(Experts in

image

(3) Text in the video

(1) Video Subtitles

[Romero_TVX'14]

USER SURVEY

The News Semantic Snapshot: Gold Standard

Newscast Title	Person	Organisation	Location	To	al
Fugitive Edward Snowden applies for asy-	11	7	10	28	$\left[\right]$
lum in Russia					
Egypt's Morsi Vows to Stay in Power	4	5	4	17	
Fukushima leak causes Japan concern	7	5	5	13	
Rallies in US after Zimmerman Verdict	9	2	8	19	Т
Royal Baby Prince Named George	15	1	6	22	Τ
Total	46	20	33	99	Γ
Table 1. Ducal damma antitat for		trong and non no	arran a at		

 Table 1: Breakdown entity figures per type and per newscast.

Play with the data and help us to extend it at:

https://github.com/jluisred/NewsConceptExpansion/wiki/ Golden-Standard-Creation

2016/10/11

Automatically Generating the NSS

- O The Selection problem
- O Approaches: frequency-based, multidimensional, concentric
- Experiments and Results

Generating the NSS: General Method

[Redondo_SNOW'14]

a) Entities from Seed Document D_S

 e_d e_a e

N·E·R·Σ

Part **2.**b

https://github.com/giusepperizzo/nerdml

(1) EXPANSION: query generation, search, document retrieval, document annotation

b) Expanded Entities $\underbrace{e_{a}}(e_{b})(e_{c})(e_{d})(e_{f})(e_{g})(e_{h})(e_{i})(e_{j})(e_{k})(e_{l})(e_{m})(e_{m})(e_{i})(e_{i})(e_{k})(e_{l})(e_{m})(e_{m})(e_{i}$

(2) SELECTION: filtering, clustering, ranking...

 $e_a e_c e_h e_j e_k e_m$

2016/10/11

c) News Semantic Snapshot

Generating the NSS: Entity Expansion

[Redondo_SNOW'14]

 e_a

ef

a) Entities from Seed Document D_S

EXPANSION: query generation, search, document retrieval, document annotation

eh

b) Expanded Entities

(2) SELECTION: filtering, clustering, ranking...

eg

c) News Semantic Snapshot

ea

eh

ec

e_d

2016/10/11

Semantically Annotating and Contextualising Big Collections of Human-Readable Documents

Part **2.**b

err

e

eι

Generating the NSS: Expansion's Settings

Generating the NSS: Expansion's Settings

[Redondo_SNOW'14]

Part **2.**b

2016/10/11

2016/10/11

Generating the NSS: The Selection problem

2016/10/11

Generating the NSS: Measures

1 Precision / Recall @ N

- Popular
- Easy to interpret
- 2 Mean Normalized Discounted Cumulative Gain (MNDCG) @ N:
- Considers ranking
- Relevant documents at the top positions

3 Compactness for Recall R:

- Compromise between: Recall and NSS size

$Com\left(R,f,v\right) = \left|min(NSS \in Res)\right| \mid f(NSS) \geq v$

Parí

2.b

Generating the NSS: Compactness Example

2016/10/11

Generating the NSS: The Approaches

1 Frequency-Based Ranking

- Leverages on biggest sample provided by expansion
- Prioritizes representativeness
- 2 Multidimensional Entity Relevance Ranking[Redondo_ICWE'15]
- Relevancy of entities is ground on different dimensions
- 3 Concentric Based Approach
- Core / Crust model
- Alleviates the problem of dealing with many dimensions

[Redondo_SNOW'14]

Part

[Redondo_KCAP'15A]

2016/10/11

Generating the NSS: (1) Frequency-Based

[Redondo_SNOW'14]

2016/10/11

Semantically Annotating and Contextualising Big Collections of Human-Readable Documents

Part

2.b

Generating the NSS: (2) Multidimensional

[Redondo_ICWE2015]

Semantically Annotating and Contextualising Big Collections of Human-Readable Documents

Generating the NSS: (2) Multidimensional

EXPERT RULES (F_{EXP})

$$S_{expert}(e) = S_{F-1}(e) * Op_{expert}$$

Example:

- [Location, = 0.43] - [Person, = 0.78]
- [Organization, = 0.95]
- [$f_{doc}(e_i) < 2$, = 0.0]

Part <mark>2.</mark>b

Experiment 1: Frequency VS Multidimensional

	Dun		Collection		Filtoring	Fune	ctions			Result	/(
	nun	Sources	T_{Window}	Schema.org	rmering	Freq	Pop	Exp	$MNDCG_{10}$	MAP_{10}	MP_{10}	MR_{10}
-	Ex0	L1+Google	2W		F3	Freq		V	0.698	0.93	0.68	0.35
	$\mathbf{Ex1}$	L2+Google	2W		F3	Freq		\checkmark	0.695	0.93	0.68	0.35
	Ex2	L1+Google	2W	\checkmark	F1+F3	Freq		\checkmark	0.689	0.93	0.62	0.31
	Ex3	L1	2W	\checkmark	$\mathbf{F3}$	Freq		\checkmark	0.681	0.9	0.64	0.35
	$\mathbf{Ex4}$	L2+Google	2W		F1+F3	Freq		\checkmark	0.679	0.92	0.7	0.36
	Ex5	L1+Google	2W	\checkmark	F1+F3	Freq		\checkmark	0.67	0.91	0.62	0.31
	Ex6	L1	2W	\checkmark	F3	Freq	\checkmark	\checkmark	0.668	0.86	0.6	0.32
	Ex7	L2+Google	2W		F3	Freq	\checkmark	\checkmark	0.659	0.85	0.56	0.29
	Ex8	Google	2W		F3	Freq		\checkmark	0.654	0.88	0.66	0.34
	Ex9	L1	2W		F3	Freq		\checkmark	0.654	0.88	0.66	0.35
20 x 4 x 4 -	Ex10	Google	2W	\checkmark	F1+F3	Freq		\checkmark	0.653	0.9	0.62	0.31
20 x 4 x 4 -	Ex11	Google	2W		F3	Freq	\checkmark	\checkmark	0.653	0.81	0.56	0.29
320 formulas	Ex12	L1+Google	2W	\checkmark	F1+F3	Freq			0.652	0.93	0.64	0.32
	Ex13	L2	2W	\checkmark	F3	Freq		\checkmark	0.651	0.89	0.64	0.34
	Ex14	Google	2W		F1+F3	Freq		\checkmark	0.649	0.88	0.64	0.33
	Ex15	L2+Google	2W		F1+F3	Freq			0.649	0.94	0.72	0.37
	Ex16	L1+Google	2W		F3	Freq			0.649	0.9	0.68	0.35
	Ex17	Google	2W		F1+F3	Freq			0.648	0.93	0.72	0.37
	Ex18	L1	2W		F1+F3	Freq		\checkmark	0.646	0.89	0.66	0.34
	Ex19	L1+Google	2W		F1+F3	Freq			0.646	0.94	0.7	0.37
	Ex20	L1+Google	2W		F1+F3	Freq		\checkmark	0.646	0.89	0.66	0.34
	Ex78	Google	2W	\checkmark	F1+F3	Gaussian		\checkmark	0.552	0.66	0.66	0.34
	Ex80	L2+Google	2W	\checkmark	F1+F3	Gaussian		\checkmark	0.55	0.69	0.7	0.36
	Ex82	L1	2W	\checkmark	F3	Gaussian		\checkmark	0.549	0.68	0.64	0.33
\bigcirc	BS2	Google	2W			Freq			0.473	0.53	0.42	0.22
	 BS1	 Google	${2W}$			 TFIDF			0.063	 0.08	 0.06	0.03

2016/10/11

Semantically Annotating and Contextualising Big Collections of Human-Readable Documents

Part <mark>2.</mark>b

Experiment 1: Frequency VS Multidimensional

2016/10/11

Experiment 1: Frequency VS Multidimensional

2016/10/11

Semantically Annotating and Contextualising Big Collections of Human-Readable Documents

Experiment 2: Multidimensional ++

NMDCG @ 10:

- 1. Exploit Google relevance (+1.80%)
- 2. Promote subtitle entities (+2.50%)
- 3. Exploit named entity extractor's confidence (+0.20%)
- 4. Interpret popularity dimension (+1.40%)
- 5. Performing clustering before filtering (-0.60%)

- No Significant Improvement -

Experiment 2: Multidimensional ++

Re-thinking the problem: measures

MNDCG:

- Too focused on success at first positions (decay Function)
- NSS intends to be flexible, ranking is application-dependent COMPACTNESS:
- Prioritizes coverage over ranking while minimizing NSS size

Recall at N

Semantically Annotating and Contextualising Big Collections of Human-Readable Documents

'ar

Re-thinking the problem: dimensions

Duality in news entity spectrum:

- Representative entities:
 - Driving the **plot** of the story
- Relevant entities
 - Related to former via specific reasons Exploit the entity semantic relations

Par

Generating the NSS: (3) Concentric Approach

Core

- Representative entities
- Spottable via frequency dimensions

[Redondo KCAP2015A]

• High degree of cohesiveness

OCrust

- Attached to the Core via semantic relations
- Agnostic to relevancy nature: informativeness, interestingness, etc.

Generating the NSS: (3) Core Creation

Generating the NSS: (3) Crust Creation

2016/10/11

Concentric Core:

- 1. Entity Frequency
 - Core1: Jaro-Winkler > 0.9
 - Core2: Frequency based on Exact String matching

2. Cohesiveness:

 \circ Everything is Connected Engine, $S_{kb}(e1, e2) > 0.125$

Concentric Crust:

1. Candidates for CRUST generation:

- Ex1: 1° ICWE2015 by R*(50): L2+Google, F3 1W, Gauss+ POP
- Ex2: 2° ICWE 2015 by R*(50): L2+Google, F3 1W, Freq + POP
- 2. Function for attaching entities to CORE:
 - \circ S_{WEB}(e_i, Core) over Google CSE, default configuration

Combining CORE and CRUST:

(2*2*2 + 2) Runs

IdealGT: size of SSN according to Gold Standard

Bun	Expansion			$Com\left(R,f,v ight)$						
itun	Collection	Core	Crust	Fusion	v_1	v_2	v_3	v_4	v_5	Avg
IdealGT		-	-	-	16	11	22	27	19	19
Cm4	Ex2	CoreA	S_{Google}	Core_Crust	21	9	41	44	45	32
Cm5	Ex2	CoreA	S_{Google}	CrustBased	20	14	41	44	45	32.8
Cm6	Ex2	CoreB	S_{Google}	Core_Crust	27	10	43	44	42	33.2
Cm0	Ex1	CoreA	S_{Google}	Core_Crust	22	13	42	43	47	33.4
Cm1	Ex1	CoreA	S_{Google}	CrustBased	21	16	42	43	47	33.8
Cm7	Ex2	CoreB	S_{Google}	CrustBased	27	13	43	44	42	33.8
Cm2	Ex1	CoreB	S_{Google}	Core_Crust	28	13	43	43	44	34.2
Cm3	Ex1	CoreB	S_{Google}	CrustBased	28	16	43	43	44	34.8
BAS01	L2+AllGoogle, 1W F3 Gaussian + EXP + POP	-	-	-	41	45	34	41	37	39.6
BAS02	L2+AllGoogle, 1W F3 Freq + EXP + POP	-	-	-	24	39	49	48	39	39.8

36.9% more compact than **Multidimensional** (NSS's size decrease)

Fukushima Disaster 2013

n=22

Parí

2016/10/11

Semantically Annotating and Contextualising Big Collections of Human-Readable Documents

NSS Consumption: News Prototypes

Aug 20, 2013 ... Edward Snowden, the source of one of the largest intelligence leaks in US history has been granted temporary asylum in Russia as he seeks to?...

'ar

... short summaries, previews, hotspots

... second screen apps, slideshows, info-boxes advanced graphs and diagrams, timelines, in-depth summaries ...

NSS Consumption: Consumptions Phases

2014

The Before

The During

LinkedTV News

BBC NEWS - EDWARD SNOWDEN: TIMELINE

Pdl
2013
Berling
Rerser

🗹 Bru 🗹 Ect

Elezioni2013 fi

Europa

Instaitalia
 Instamood
 Italia elezion
 Italy

Germa

Aug 20, 2013 ... Edward Snowden, the source of one of the largest intelligence leaks in US history has been granted temporary asylum in Russia as he seeks to?...

The After

'ar

NSS Consumption: Phases VS Layers

2016/10/11

Semantically Annotating and Contextualising Big Collections of Human-Readable Documents

Part

2.c

What's Next?

O Future Challenges

2016/10/11

Conclusions

Q3: Is it possible to automatically contextualize news stories with background information so they can be effectively interpreted by humans and machines?

- a. Proposed the NSS model and a Gold Standard
- b. The multidimensional nature of the entity relevance
 - Gaussian function, popularity, experts rules...
- c. Concentric model better reproduces the NSS:
 - Better Compactness: 36.9% over BAS01 (similar recall, smaller size)
 - Core/Crust brings up relevant entities without having to deal with fuzzy dimensions
- d. NSS better supports the news consumption phases: (Before, During, After)

Future Work

- Applying those those IR and KR techniques to :
 - Bigger Corpora: Big Data
 - Different Domains: Scientific Papers, Libraries, etc.

In parallel, stop depending on "big players" for retrieving knowledge during the expansion phase (Terrier VS Google experiments)

Future Work:

Explanations :

Spot not only the strength of the relationships between
 Crust and the Core, but also the predicates

2016/10/11

José Luis Redondo García 🚯 http://jluisred.github.io

@peputo

http://github.com/jluisred

References

[Redondo_KCAP'15B]	Capturing News Stories Once, Retelling a Thousand Ways
[Redondo_KCAP'15A]	The Concentric Nature of News Semantic Snapshots
[Redondo_ICWE'15]	Generating Semantic Snapshots of Newscasts using Entity Expansion
[Redondo_ISWC'14]	Finding and sharing hot spots in Web Videos
[Redondo_ESWC'14]	Augmenting TV Newscasts via Entity Expansion
[Redondo_SNOW'14]	Describing and Contextualizing Events in TV News Show
[LinkedTV_D2.6'14]	LinkedTV Framework for Generating Video Enrichments with Annotations
[Romero_TVX'14]	LinkedTV News: A dual mode second screen companion for web-enriched news broadcasts
[Hoang_MediaEval'14]	LinkedTV at MediaEval 2014 Search and Hyperlinking Task
[Rizzo_LREC'14]	Benchmarking the Extraction and Disambiguation of Named Entities on the Semantic Web
[Li_LIMe'13]	Enriching Media Fragments with Named Entities for Video Classification
[Milicic_WWW'13]	Live Topic Generation from Event Streams
[Milicic_ESWC'13]	Tracking and Analyzing The 2013 Italian Election
[Sahuguet_MediaEval'13]	LinkedTV at MediaEval 2013 Search and Hyperlinking Task
[Rizzo_SAM'12]	What Fresh Media Are You Looking For? Extracting Media Items from Multiple Social Networks

2016/10/11

Experiment 3: Multimodal VS Concentric (NMDCG)

Best Multimodal Run, NMDCG @ 10: 0.698

Bun		Collection		Filtoring	Fune	ctions			Result	d	
nun	Sources	T_{Window}	Schema.org	rintering	Freq	Pop	Exp	$MNDCG_{10}$	MAP_{10}	MP_{10}	MR_{10}
Ex0	L1+Google	2W		F3	Freq		\checkmark	0.698	0.93	0.68	0.35
$\mathbf{Ex1}$	L2+Google	2W		$\mathbf{F3}$	Freq		\checkmark	0.695	0.93	0.68	0.35
Ex2	L1+Google	2W	\checkmark	F1+F3	Freq		\checkmark	0.689	0.93	0.62	0.31
Ex3	L1	2W	\checkmark	$\mathbf{F3}$	Freq		\checkmark	0.681	0.9	0.64	0.35
$\mathbf{Ex4}$	L2+Google	2W		F1+F3	Freq		\checkmark	0.679	0.92	0.7	0.36
$\mathbf{Ex5}$	L1+Google	2W	\checkmark	F1+F3	Freq		\checkmark	0.67	0.91	0.62	0.31
$\mathbf{Ex6}$	L1	2W	\checkmark	$\mathbf{F3}$	Freq	\checkmark	\checkmark	0.668	0.86	0.6	0.32
Ex7	L2+Google	2W		$\mathbf{F3}$	Freq	\checkmark	\checkmark	0.659	0.85	0.56	0.29
$\mathbf{Ex8}$	Google	2W		$\mathbf{F3}$	Freq		\checkmark	0.654	0.88	0.66	0.34

Best Concentric Approach, NMDCG @ 10: 0.645

- Best Run: [Ex1, Core A, Core+Crust]
- Slightly lower NMDCG @ 10:
 - Ranking is too much application dependent
- Need of reconsider evaluation:
 - Recall is higher (0.35 VS 0.37)
 - Why @ 10?

Multimedia Model: LinkedTV Model

2016/10/11

Part

Multimedia Model: LinkedTV Model

2016/10/11

Evaluation: Multimodal @ Mediaeval 2013

Hyperlinking Task

~ 1697h of BBC video data, 2323 videos

- Different TV shows (news, sports, politics...) from 2012
- Subtitles and ASR (English)
- Output of some visual algorithms: shot and face detection

2016/10/11

Part

Evaluation: Multimodal @ Mediaeval 2013

Annotations	Processing Time	Туре
Visual Concept Detection (151)	20 days on 100 cores	Visual **
Scene Segmentation	2 days on 6 cores	Visual
OCR	1 day on 10 cores	Visual
Keywords Extraction	5 hours	Textual **
Named Entities Extraction	4 days	Textual
Face detection and Tracking	4 days on 160 cores	Visual
Approach	 Data Indexing: Lucene & Solr Granularities: Shot, Scene Multimodality 	s, Sliding Windows
	 Query Formulation: Search: Text + Visual Cue Mapping, LSCOM Hyperlink: Subtitles, Keyv (MoreLikeThis) 	es + Visual Concept words, LSCOM concep

Part

Evaluation: Mediaeval 2013 Results

Semantically Annotating and Contextualising Big Collections of Human-Readable Documents

Pari